Top12
Open-Source Software in Dependable Systems

Thursday 26 August

Organizers: Philippe David (ESA, The Netherlands), and Hélene Waeselynck (LAAS-CNRS, France)
Contact: Helene.Waeselynck @laas.fr

While Open-Source Software (OSS) is penetrating the software business at large, software-intensive
applications having high dependability requirements have been little concerned so far. At a first
glance, introducing OSS into such critical systems seems risky. The constraints imposed by adherence
to certification standards may be deemed irreconcilable with the open-source development model.
Still, the question is being taken seriously in domains like transportation, space, or nuclear energy:
gaining acceptance into dependable systems might well be the new challenge for some mature OSS
products.

10h30 — 12h
Introductory talks
Chair: Hélene Waeselynck (LAAS-CNRS, France)

OSS in Critical Systems: Motivation and Challenges — Philippe David (ESA, The Netherlands),
Hélene Waeselynck, Yves Crouzet (LAAS-CNRS, France)

Trusting Strangers — Carl Landwehr (U. of Maryland, USA)

An Interdisciplinary Perspective of Dependability in Open Source Software — Cristina Gacek (U. of
Newcastle, UK)

13h30 - 15h
Insights from OSS suppliers
Chair: Philippe David (ESA, The Netherlands)

Is Academic Open-Source Software Dependable? — Shigeru Chiba (Tokyo Institute of Technology,
Japan)

Open Source in Dependable Systems: Current and Future Business Models — Cyrille Comar, Franco
Gasperoni (ACT Europe, France)

An Open-Source VHDL IP Library with Plug & Play Configuration — Jiri Gaisler (Gaisler Research,
Sweden)

15h30 - 17h
Insights from OSS integrators and general discussion
Chair: Andrea Servida (European Commission, Belgium)

Linux: a Multi-Purpose Executive Support for Civil Avionics Applications? — Serge Goiffon, Pierre
Gaufillet (Airbus, France)

A Journey towards an OSS-Aware Organization — Jean-Michel Tanneau (THALES Research &
Technology, France)

General discussion and concluding remarks by Andrea Servida (EC, Belgium)

Open Source Software in Critical
Systems: Motivations and Challenges

Philippe David, Héléne Waeselynck, Yves Crouzet
European Space Agency & LAAS-CNRS
Wcc 2004-Topl2

Network on De endability @

l" \\ / \
*\ pa—
<http://www.ris.prd.fr>

o Workm% Group on OSS and Dep endablll‘rz
(RIS members + sar"hapan‘rs from Industry ESA, SNCF,
and Academia LSV, INRETS, IRISA)

m Publication of a book
Hermes Science Publications Logiciellibre et sareté
(in French) -—> de fonctionnement

sous la dire
Philippe David
Héléne Waeselynck

Some Facts

m Some functions implemented by OSS are used in critical
systems:
¢ Operating Systems
¢ Communication protocols
¢ language
m OSS projects are more organised than one can usually think:

¢ Funded by associations or groups of industries that share a common
interest.

& OSS development is usually well organised.
= Can we then expect benefits from using OSS in building
critical systems?

How we have conducted our analysis

Analysing the economical parameters for the use of OSS, in

a global manner at system level.

Exchanging information with industries and laboratories.

Using feed back information from using COTS.

Taking into account critical system requirements:
& Certification,
& Detailed knowledge of the underlying technologies.

¢ Maintenance aspects.

Evolution of critical systems

m Critical applications are more and more widely used in our society.
m Production Cost is more and more constrained.

= Reuse is favoured instead of new software development: COTS.
m Interoperability of systems is coming: systems of systems

= Use of interface standards is mandatory
=> Security must be taken into account.

m Massive use of Software
=> 48 kb onboard satellites in 1980 = 1,2 Mb on Mars Express in 2003.
= 25 Kb onboard A300B Airbus plane in 1974 < 64 Mb on A380 in 2005.

m Certification requirements extend to an increasingly larger set of
industrial domains.

Feed-back from using COTS in critical
systems

m System Integrator Needs

L 4

*
*
*

*

Detailed knowledge of the COTS
COTS must adapt to the system
Certification file must exist

COTS must stay available during a
5-10 years period of time.

Long tferm Maintenance ensured
for 10 to 20 years

Compliance with standards

Cost and details of the license
must be negotiated

Encountered drawbacks

¢ Provider may not be interested in
providing support
= cost of support

¢ Integrator does not and cannot know
the details of the COTS

= cost of the certification file

¢ Diverging interests of user and
provider due to the market evolution

=> cost of freezing the version

& Freezing a version for a long time
=> maintenance cost

& For small number of systems
= cost of licenses is significant

¢ Proprietary clauses may constitute a
blocking point for system

= negotiating the licenses is a key

Risk Mitigation

m Risk due to COTS license m Risk due to OSS license
& Strategic problem. ¢ Freedom of use.
¢ Industry is used to manage it: license, & GPL is contaminating other SW: Major
property. point to be managed.
m Risk due to COTS Failure m Risk due to OSS failure
& Provider’s liability is limited. ¢ The system integrator is the only
& Failure propagation from COTS to the responsible.
whole system is a real problem that & Failure propagation must be managed

must be managed by the integrator.

¢ The system integrator has no/little
knowledge about the COTS, support is

by the integrator.
¢ 0SS source code is available, the

necessary. integrator can acquire the technology.
& Confidence between provider and Support can be necessary.

integrator is of prime importance. It is ® The integrator must get confidence in

not sufficient when dealing with critical the OSS. This is a major issue.

systems.

m OSS evolution

¢ 0SS can be maintained by the system
manufacturer

m COTS provider disappearing

¢ Major industrial risk with no simple
solution.

Impact of the system maintenance

m Life time of critical systems is quite long
& Satellites: 15 years
¢ Command and control for nuclear propulsion in boats and submarines: 40
years
m Maintenance issues are impacting the system design

& Architectural solutions must be used to minimize the impact of version
updates.

= The use of interface standards is favoured.
= Wrapping mechanisms allow changing Software versions with minimum
impact on the system.
m Long Term Maintenance asks for risk mitigation actions to
cope with the change of provider
= Availability of the source code is mandatory

Assets of using OSS in systems

COTS = group of users =» standards for interface & OSS
Specific, Proprietary = Standard, Public = Easier Interoperability

= No restriction to access the source code

m Does this access to source code help in easing the
design/development/maintenance of critical systems?

m Several scenarios are encountered:

1. Acquisition phase of the OSS Technology.
2. Adaptation phase of the OSS to the system.
3. Building the certification file.
4. Operational maintenance.
5. Putting in place a long ferm maintenance team.
6. Managing major system evolutions.
Scenarios of use of the OSS
Technology Adaptation to | Certification | Operational Long Term Major Synthesis
Acquisition system d Mai Mai Evolutions
Scenario 1 Not Done by OSS | Not Done by OSS | Use of Source | Done by OSS | No investment.
vNo certification | necessary Provider necessary Provider Code Provider Risk is low and accepted.
vNo maintenance Situation in Space today
Scenario 2 Done Done by OSS | Not Done by | Done by | Done by | Technology Acquisition.
+No certification | through OSS | Provider necessary Integrator Integrator Integrator Investment in an in-house
~Maintenance Provider OSS maintenance team.
Scenario 3 Done Done by | Done by | Done by OSS | Done by OSS | Done by OSS | Technology Acquisition.
vCertification through OSS | Integrator Integrator Provider Provider Provider Certification by the
+No Maintenance | Provider Integrator.
No maintenance on OSS.
Scenario 4 Done Done by | Done by | Done by | Done by | Done by | Technology Acquisition.
vCertification through OSS | Integrator Integrator Integrator Integrator Integrator Certification by the
Maintenance | Provider Integrator.
Investment in the OSS

maintenance team.

Assets and drawbacks

m Access to source code
o Allows mastering the evolutions of the software
¢ Independence from any provider

& Major risk: in case of failure, got source but without getting corresponding
knowledge. This is the same with COTS.

m 0SS Technology Providers
& Same process as for COTS, without licensing problems.

¢ Provided support is of ten of better quality than for COTS as the provider core
competence is the OSS technology and not selling license.

m Technology Acquisition
¢ Detailed Technology Acquisition on the OSS may cost several person.years

¢ Investment is heavy on short and long term in order to maintain the OSS team
during the project life time.

Dependability of the OSS

Some design infrastructure must be used to host the OSS as:
¢ The OSS is potentially a point of failure whose modes are not known.
¢ The OSS functionalities may be too abundant or not fully suitable.

Use of wrappers

Partitioning the critical system into different criticality levels.
o Error confinement mechanisms allow critical systems to be open for
interoperability with other systems.
Security

Should be taken into account as the OSS has been developed by a third party,
often not known.

Certification

m Certification has a strong impact on the design of the system.
m Dependability and ability to be certified are not taken into account by
0SS design.
>Reluctance of industry to use the OSS.
¢ Must be performed by the industrial user.
m Our objective : to analyse the certification processes of the various
industrial domains in order to
o identify methods and efforts for allowing system certification when using 0SS
2> 0SS must demonstrate a competitive advantage for the system
2> Without introducing new risks

Certificq‘tion: overview on various
industrial domains

m Levels of criticality are ordered in a similar way in all the
industrial domains.
¢ DAL (Development Assurance Level) in aeronautics
& SIL (Safety Integrity Level) in railway

Category Railway Aeronautics Space Nuclear
No Impact SIL 0 E / !
Impact SIL 1-2 C-D critical Band C
on system
Impact SIL 3-4 A-B catastrophic A
on human lives

Impact of the safety levels on the
system architecture: aeronautics

m Safety analysis top down from system to all equipments that
contribute to safety.

m Certification body has a dedicated referential for Software
design and development, the DO-178B, who provides
recommendations in the aim of guarantying the system
safety:

¢ Electrical command of the planes are software implemented.
m 5 software categories (A to E) are defined

¢ Depending on the impact a software failure may have on the system.

System solutions to the use of software
categories: aeronautics

CIassification Level of redundancy
of failure
conditions 0 1 2
Catastrophic A B C
Dangerous B C D
Major C D D
Minor D D D
No effect on E E E
safety
DAL (Development Assurance Level)

A critical softfware function able fo lead to a catastrophic failure must be either:
m Not redounded. In this case, it is classified in soffware category A.

m Duplicated. Each of the two software versions is classified in category B.
mTriplicated. Each version is classified in category C.

Certification and dependability of OSS

m A critical system can be designed from less critical functions
only if they are redounded and the redundancies are
managed according the safety requirements of the system.

m Communication protocol or operating systems are potential

candidates for use at level C or D.
= Use of redundancies renders the certification feasible for use of 0SS at
level C or D.

m Use of OSS at levels A or B implies a dedicated development
process where the Software is specifically developed and
certified accordingly.

= Building new OSS.

Development method

m DO-178B defines objectives
¢ The certification case must contain proof elements that contribute to a
negotiation between the industry and the certification body.
m In nuclear, railway and space domains, a design and
development method is imposed per category.

m Three major objectives:
1) Fault avoidance by applying rigorous development methods,
2) Fault removal by using tests and integration fests,
3) Protection from remaining faults through the use of dedicated functions
for fault tolerance and robustness
= It is possible to harmonise the certification processes
among these domains: in terms of software life cycle and
methods.

Part of the certification effort can be
shared by consortium of users

Bringing OSS to the level of use in a critical system requires two kinds of
effort:

m Generic tasks: depend only the software and results may be used by all
system willing to embed the OSS.
¢ Documentation
¢ Tests

m Specific tasks: depend on the system, mainly oriented towards safety
and hardware interface.

¢ Safety assurance plan. For SIL 1 et SIL 2 (C, D), safety requirements are quite
limited.
& Hardware integration.
- Software test on hardware must be rerun for each project.
= Development and test efforts are mainly system independent or must be
re run anyway.
= Certification effort can be anticipated.

Usable methods for integrating an OSS
in a critical system

® Analysing the certification standards of the various industrial domains
for critical systems allows us to conclude that:

¢ A list of common method can be used to adapt and integrate an OSS in a critical
system.

¢ These methods depend on the criticality of the function and not on the industrial
sector in subject.

m Dedicated solutions exist to embed OSS in critical systems
& wrappers
¢ Partitioning
Protection mechanism: security?

m System architecture must be based on interface standards
¢ Favour the use of OSS components
o Enhance the system life time and ease the maintenance

Expected benefits of using OSS:
virtuous circle

Use of interface standards allows exchanging Software between projects
and companies
Building the OSS Certification file is a big effort, requires heavy
investment but it can be shared.
Reluctance of industry to use OSS comes from the perceived non
compatibility of OSS with certification
¢ We demonstrated that this is not true when using proper architectural solutions
at system level.
Risks are better managed than with COTS
¢ Building the OSS Certification file must be started by a group of user
companies.
= Sharing the effort
= Common use of the file that will be enriched from various operational practices.
Initiating the virtuous circle

Conclusion (1/3)

m Use of COTS has demonstrated some limitations.
m Use of OSS brings real assets:

& Comply to standards

Lower risk

¢ Source code use for adapting and maintenance
m Perceived drawback

¢ Non compatibility with the certification process but we demonstrated that
solutions exist:

= Architectural solutions to host OSS components
= Starting the virtuous circle by an industrial initiative
= Industry can now be beneficial in contributing to the OSS community

Conclusion (2/3): initiatives for promoting
the use of OSS in critical domains

m Setting-up a industrially shared set of methods and tools to
use OSS in our systems: repository on internet.

m Upgrading OSS to fulfil industrial constraints.
¢ Common methods and tools
¢ Sharing the 0SS
& Tools are put at the disposal of users.
¢ development environments used to produce critical systems

m Evaluating OSS, and capitalizing on their use
Validation : characterisation of failure modes and performance
¢ Wrappers can be made available
Configuration of OSS for dedicated use or hardware
& Starting the common activity towards a certification file

Conclusion (3/3): Future must be prepared

m OSS is not the only open source item:
& Open hardware (VHDL or C models)

m System engineering is more and more using simulation models from which
code is automatically generated.
¢ Models must be made freely available
m A new license

¢ Industrial needs are not consistent with GPL conditions. A lot of new ad-hoc
licenses are emerging.

¢ A license for industrial use of the OSS must be established.

Can be an European initiative

IFIP WCC Topical Day on
Open Source Software in Dependable Systems

Trusting Strangers
Open Source Software and Security

26 August 2004

Presented by Carl Landwehr
Vipin Swarup Institute for Systems Research
The MITRE Corporation University of Maryland
The S5t A JAMES CLARK
MITRE Jnstitefor 2. SCHOOL OF ENGINEERING
Svstems A

soarah. % o
Research heise

Outline

1. Software and Trust
2. Certifying Security
3. Open vs. Closed

Hélène Waeselynck
Rectangle

Visible (inspect-able?) systems

Less visible

» Even a basic car like a Citroen 2-cv
hides a lot under the hood

» Consider a modern airliner

Hélène Waeselynck
Rectangle

What about this building?

Or this one?

(CDG terminal
5/23/04)

Or your microwave oven?

We rely on many anonymous strangers to
design, build, deliver, and maintain
critical systems

Hélène Waeselynck
Rectangle

But it's not blind trust

+ We have building codes and inspectors
+ We have safety regulations
* We have product liability

+ We have publicity when accidents and failures
occur, and consumers react

Software is an unusual artifact

- Little physical substance, but can convey sensitive
information and control significant energy

- Significant costs in design and implementation
* Low cost of replication

+ Small changes to its representation can yield
major behavioral changes to systems

* Usually licensed, rarely sold

+ Licenses typically relieve producer from product
liability

Hélène Waeselynck
Rectangle

Certifying Software Systems

- Safety certification:
- Baseline assumption: incompetence, not malice
- Typically a combination
- Development process controls
* Inspection and testing
- Additional strong economic factor:
* consumer response fo accidents
- Status: not perfect, but reasonably effective

Certifying Security

Baseline assumption: malicious attacker
Common Criteria (CC) scheme

- Permit separate specification of function and assurance
requirements

- Develop Security Target (specification)

- Develop Target of Evaluation (implementation)

- CC Testing Lab checks whether TOE meets ST
Issues:

- Unless relatively high assurance levels are requested,
source code will not be reviewed by lab

+ And most flaws exploited in today's attacks are in the
implementation, not the spec

- Scheme remains component-oriented
+ Security is a system property
- Cost-effectiveness unknown

Hélène Waeselynck
Rectangle

Open vs. Closed

- Should we encourage/allow/disallow the use of open
source software in security-critical applications?

+ Arbitrary tools can be used to investigate, modify, re-link,
rebuild, analyze, the software

+ Third party can examine in as much detail as you can afford
but
- Liability for the results will rest with you

- Lf you don't review the software, there's no guarantee anyone
else has either

- most of those "thousands of eyes” lack expertise and interest
- some of them might be malicious

Is closed source better?

* Carries the producer’s economic interest in the
product - a potent factor
+ Can drive control of software development
+ For large companies, reputation is a factor
* But
- Not much product liability for licensed software either
- Hackers find flaws even without source access

Hélène Waeselynck
Rectangle

Conclusions

* Caveat emptor
- Neither open nor closed source produces "bullet-proof”
software without specific investment for that purpose

- Exposing source doesn't automatically improve its
security properties

- Neither does hiding it
Seek product and architectural assurance

- Process assurance is uncertain in a world of outsourced
component software modules

Exploit what you know, and what know you don't know

- If you use open source, consider whether to reconfigure
or rebuild

- If you purchase closed source, investigate the
developer's processes, motives, independent evaluations

- Build system architecture taking these into account

Thank you!

Discussion?

Acknowledgements:
Thanks to Michael Hicks, U. Md for discussions
Thanks to Vipin Swarup, MITRE for presentation!

Hélène Waeselynck
Rectangle

“I still don’t have all the answers, but Pm
beginming to ask the right questions.”

Hélène Waeselynck
Rectangle

An Interdisciplinary
Perspective of Dependability

in Open Source Software

Dr. Cristina Gacek

School of Computing Science
University of Newcastle upon Tyne — UK

Overview

0 Context
o What is OSS?
o Preliminary Conclusions

o Evaluating the Dependability of OSS
Products

o Deriving Dependability Insights from OSS
Products

o Future Work

WCC - Toulouse - 26/08/04 © Cristina Gacek, 2004 2
University of Newcastle upon Tyne

Context

o Within the DIRC (Interdisciplinary
Research Collaboration in Dependability)
project
= 1 year activity

= Feasibility study for further activities in the
area of development of dependable systems
using open source approaches

o Several students’ dissertations
= Investigating Open Source projects

WCC - Toulouse - 26/08/04 © Cristina Gacek, 2004
University of Newcastle upon Tyne

What 1s Open Source Software (OSS)?

O Lack of precise use of the term

o0 Usually a combination of one or more of
Licensing model

Visibility of source code

Right to modify

Multiple reviewers

Multiple contributors

WCC - Toulouse - 26/08/04 © Cristina Gacek, 2004
University of Newcastle upon Tyne

0 Open Source Definition (OSD)
Provided by Open Source Initiative (OSI)

Addresses legal and (some) economic issues
Ability to distribute software freely
Source code’s availability
Right to create derived works through modification

0 The many meanings of Open Source

View from various disciplines: CS,
Management, Psychology, Sociology

Finding common and varying characteristics of
open source projects

WCC - Toulouse - 26/08/04 © Cristina Gacek, 2004 5
University of Newcastle upon Tyne

Adherence to OSD Starting point

VARIABL Balance of centralization and

decentralization

Developers are users Motivation Meritocratic culture

modularity

Visibility of software
architecture

Geographical distribution

Community

Licensing Code base

Documentation and
testing

Choice of work area

Decision making process

Accepting submissions

Submission information

Tool and operational dissemination

upport

WCC - Toulouse - 26/08/04 © Cristina Gacek, 2004 6
University of Newcastle upon Tyne

OSS vs. “Traditional” Software

[] Starting point

Developers are users [:]

Motivation

VARIABL Balance of centralization and

decentralization

Meritocratic culture

Geographical distribution

Modularity oftware development support

Visibility of software

architecture Licensing

Documentation and Choice of work area

testing

Accepting submissions

Decision making process
Tool and operational

upport []

WCC - Toulouse — © Cristina Gacek, 2004 7
University of Newcastle upon Tyne

Preliminary Conclusions

o The term “Open Source” is often used in a vague
manner

o OSS characteristics facilitate a better
understanding

o As much variation exists between OSS projects
as between any set of projects

o It is not meaningful to bundle all OSS products
and projects into one category
» Apache and Linux
m Topologilinux and Frozen Bubble
m 329 compilers in Freshmeat.net on 24/08/04

WCC - Toulouse - 26/08/04 © Cristina Gacek, 2004 8
University of Newcastle upon Tyne

o OSS products contain fewer faults because they have
been reviewed by many people.

o OSS products are more secure because they have been
reviewed by many people.

o OSS products have little to no design documentation
available.

o Having little design documentation available does not
impact an OSS project as negatively as it would a
“traditional” one. The reason being that OSS developers
contribute towards development for their joy and pleasure,
and consequently are less likely to leave the project than
an employee to change jobs.

o OSS products are developed by hackers in their free time,
who only submit code for consideration once a high
standard of quality has been achieved.

WCC - Toulouse - 26/08/04 © Cristina Gacek, 2004 9
University of Newcastle upon Tyne

O Like that of “traditionally” developed
software
Needs to be done on a case by case basis
Different versions and releases of the same
product must be considered individually
o Who would be responsible for pursuing
certification?

One possible model: have interested
companies work towards needed certification

WCC - Toulouse - 26/08/04 © Cristina Gacek, 2004 10
University of Newcastle upon Tyne

o OSS characteristics are not restricted to OSS,
hence insights from OSS can be used in other
settings

o Studies are much easier to conduct in OSS than
in “traditional” settings

Information available electronically
Time consuming to locate and collate related info
Key players usually receptive to queries

o Our results to date show a strong correlation

between the quality of installation documentation
and code readability

WCC - Toulouse - 26/08/04 © Cristina Gacek, 2004 11
University of Newcastle upon Tyne

o0 Study openness characteristics that foster
more dependable systems

Which combinations of characteristics are
beneficial?

Which combinations of characteristics are
detrimental?
0 Replicate results from OSS into
“traditional” environments

o0 Explore avenues for adopting OSS into
critical systems’ settings

WCC - Toulouse - 26/08/04 © Cristina Gacek, 2004 12
University of Newcastle upon Tyne

WeCiiz ‘

Is Academic Open-source
Software Dependable?

Shigeru Chiba

Tokyo Institute of Technology,
Japan

Topical Days: Open-Source Software in Dependable Systems
18t IFIP World Computer Congress
In Toulouse, France on Thursday 26 August 2004

[My experiences..

My job

Research and teaching as a university prof.
Research projects

Explore academic ideas

Develop software products as “proof of
concepts”

Resulting products are distributed as Open
Source Software.

[OpenC++ and OpendJava

Extensible C++/Java compiler
Method-call behavior, syntax, ...
Research on reflective computing

Project started in 1992

Ve ;/erSI;)(n 2 Maintained
: erSKlJJn _ I;(,Z\rlgC erox by outside volunteers
rom univ. on Sourceforge.net
of Tokyo
Opendava
1992 1993 1996 1999 2003 s

[OpenC++ Users

Mainly used as a research platform
e.g.

To implement their middleware for

dependable computing

by J. C. Fabre at LAAS-CNRS
Downloads

>= 6,000 copies from 2000 to 2003
both academia and industry

[Javassist

JBoss is the most o
downloaded .—ﬂj',hnss

Java bytecode engineering library
o Easy to use due to source-level abstraction
o Research on Aspect-Oriented Programming

Project started in 1998

First Hé)sted by.
release JBoss project
1998 1999 2003

JBoss is no.1 open-source
J2EE server.
Market share:
No.1 WebSphere
No.2 WebLogic
No.3 JBoss 27%

[Javassist Users

Used as a library for implementing
middleware for Web applications.

o e.g. JBoss J2EE server, Tapestry, ...

o Industry-strength open source software

Downloads
o >=500/month in 2003Q4
o >=7,000/month as part of JBoss

as well as research systems

[The topic of this talk]

Is Academic Open-Source
Software (OSS) Dependable?

=]

= Code quality
Industry-strength as other open source
software

o A larger user base tests on more
platforms and finds more bugs.

[Yes!? ('m not sure...)]

= Long-term supports and maintenance
o Key to dependable software

= Academic open source project
o The goal is to publish academic papers.
o Itis funded; not a volunteers’ project.
o After the project ends, the software is...

[Life Cycle of Academic OSS]

Planning

Funding

Low motivation

Maintenance Development

- Documents

- Bug fix

- Performance tuning Release
-Certification _

- New feature supports & Publish
- Consultation .

[Life Cycle of Regular OSS]

Planning

It's fun

Development

Maintenance

Release

[Software development is fun.]

= But...
dependability

(code quality)

high e~ T T T T T T T

new version
of platform

motivation

time

[Life Cycle of Successful OSS]

Thinking about
a next versoin

Planning

Maintenance

Getting popular

Release

It's fun

Development

[Short Release Cycle

= Motivates developers

o Thinking a new version is fun.

= Bad for dependability

o Which release fixes this bug?

o Which release is stable?

o Not perfect compatibility between releases.

14

[Professional Open Source

Business model of JBoss Inc.

o Employees spend their time
50% for new OSS development
50% for maintenance of their old OSS

o The company sells supports and
consultation of old OSS by the authors.

Open Source Software is not free!

15

[To Make Academic OSS
Dependable

How can we keep
motivation?

[Technology Transfer?]

Pro. OS Company

Feedback Academia

Planning

Development

Funding

Maintenance

Release

Development

Industry or Transfer Release
Community & Publish

Who is interested in academic OSS? |

[Final Remarks]

= If you use academic OSS
for a commercial dependable system,
o Acquire the OSS project,
» And start Professional OSS business

o Contract with the OSS developer for
consultation, or

o Hire the OSS developer if she is a student.

o AT

TECHNOLOGIES.INC EUROPE

Free Software - Open Source
Business Models

Franco Gasperoni

rrrrrr

Exclusive legal right of copyright holder to \j: -

fary”; =c= === i

» Copy prm

(=T ; S

« Distribute ’Z,'f - >

. Fiioe i i

o Modify IASSRAAE o 4
« Display
o Perform

o Exploit a work

Software and Copyright

THOWOLOGTS 1R

« Both source and object code can be copyrighted

o Loading software onto a
computer is considered

copying

Copyright & Licensing

THOWOLOGTS 1R

« A copyrighted work cannot be copied unless...

o ... the copyright holder grants you a license ...

« ... permitting copies under specified circumstances

Virtually all software today is sold with a license

The Free Software Movement (ca 1980)

o Freedomto run FREE AS IN

FREEDOM

RICHARD STALLMAN &
THE FREE SOFTWLRE FOUNDATION
W

o Freedom to redistribute copies

o Freedom to study and adapt

o Freedom to improve it and release the improvements

Free Software Is Copyrighted Software

To protect these freedoms Free Software comes with a license
o The General Public License (GPL)

From this point there is NO DIFFERENCE between

GPL: The License of Free Software (FS)

o The GPL is written to favor FS users

« Specifically the GPL guarantees:

+ Freedomtorun
+ Freedom to redistribute copies
+ Freedom to study and adapt

+ Freedom to improve it and release the improvements

o Examples of FS:
« Emacs, GCC, GNAT Ada, GNU/Linux, ...

The Meaning of Free in FS

Freedom

o You can sell it

o You can make it available for free

FS is a matter of liberty not price

Open Source Software (OSS)

o Providing the sources (under some license)

+

« Encouraging a wide community to participate in development

There have been abuses in the licenses used

« Open Source Initiative (OSI) created to
« Define what licenses qualify as “Open Source”

The OSS Movement

o Attractive to major companies (e.g. IBM, SGI, HP, ...)

«Can leverage on a larger developer community

« Claims are made for better quality, better security etc.

o Inpractice:
« Some OSS projects work, some don't.
« Some OSS software is high quality, some is not.

« Some projects make sense as OSS some don't.

rrrrrr

FS and OSS

o One of the important freedoms for FS is

« The freedom to modify, which means that sources are available.

o Soitis often, but not always, the case that FS:
+Ends up with an open source community participating in development.

+ E.g. Linux

« Not all OSS projects are FS because of the license

AdaCore ACT

TECHNOLOGIES.INC EUROPE

FS/OSS and COLS

Commercial Off-The-Shelf (COTS)

o Most people look for COTS software
Economies of scale
Reduced Costs
Inexpensive way to stay with the state of the art in technology

User community

COTS and Closed-Source Software

o Two big downsides

o Vendor lock in for support
Only the vendor can provide support

« This can be locked in with licenses etc
If the vendor goes bankrupt, too bad
Source escrows are not much help

o Vendor lock in for modifications

the vendor for changes
+ This can be arbitrarily expensive

If the software does almost what you want, but not quite, you have to ask

Free Software Licensed COTS

« Fixing the two big downsides of COTS

o NO vendor lock in for support
+ Everyone has access to the sources
+Anyone can provide support
+You can even build your own support
If there is a demand other companies will compete

o NO vendor lock in for modifications
Everyone has access to the sources
«Anyone can do modifications
+ You can do modifications yourself if you like

COTS + FS = COTS without the risks

Worrying about Licenses and Quality

FS, OSS, and Proprietary Software share 3 common truths

o CHECK THE LICENSE

Make sure it is suitable for your use

o CHECK THE QUALITY
No software license guarantees quality
Use your normal procedures to ensure that you choose quality software

Buy SW products whose business model aligns with your quality needs

Ada Core

TECHNOLOGIES.INC EUROPE

"Quality” and

rrrrrr

FS/OSS and Dependable Systems

SW in a dependable system:
« Part of an auditable & repeatable process
« With stringent “quality” requirements

o What are the quality guarantees for FS/OSS ?

FS/OSS Product With No Support

o Supplier sells FS/OSS applications

« Perhaps with some installation help

o E.g. previously commercial GNU/Linux distributions
o Can check quality by inspecting the sources ... © ®
« This is an advantage over conventional proprietary SW

o Not particularly attractive to developers of Dep. Sys.

Dual License

o Available to FS/OSS companies that own 100% copyright

o Whose products are included in the sw developer’s code

o E.g MySQL, Cygwin
o Relies on vendor lock in

« No additional advantage over previous model

10

Infrastructure Provider

THOMWOLOGHS. I

o OSS development website
 E.g. OSDN, SourceForge

o Leverages on large developers community
o Free for basic services, fee for advanced web browsing
« Revenue from some advertising

o SourceForge Enterprise Edition

+ To manage and execute offshore and distributed team development

« Interesting for large/distributed teams

Pure Service

THOMWOLOGHS. I

o E.g. Alcove, IBM Global Services for GNU/Linux

Different from “traditional” service models in that:

o Consultants have access to the sources
o Can contribute to OSS efforts

o Allows deeper level of consultants know-how

11

Sell the Artifacts

SW in a dependable system:
« Part of an auditable & repeatable process

+ With stringent quality requirements
SW in a dep. sys. = sources + build scripts + artifacts

Provide the artifacts for FS/OSS product and sell them

« Creation of artifacts is not the main focus of FS/OSS

Software Coops

Coop to share resources and know how
To develop artifacts for FS/OSS application
More generally to guarantee FS/OSS quality

For the members of the coop

12

Leveraged Service

o FS/IOSS product with expertise-based service

o Provided by the developers of the FS/OSS product
+ E.g. AdaCore and GNAT Pro

« Quality guaranteed by aligning interests with customer’s
+ Subscription-based model
« Quality can be verified on an ongoing basis
+ Quality feedback loop in place

« If poor quality/service subscription not renewed

Qualify Is an engoling process

Conclusion

Common truths of FS, OSS, and Proprietary Software:
o CHECK THE LICENSE
o CHECK THE QUALITY

o CHECK THE BUSINESS MODEL

+ Make sure it is aligned with your interests

13

GRLIB QpanrSurce VHDL IPLibrary

Jri Gade
Gade Ressarch

jiri@gpgider.com

GAISLER RESEARCH

| ntrodudion

¢ High device density (ASIC & FPGA) has led to a larger number
of new SOC designs

¢ Animproved design methodolgy is needed to allow cost-
efficient development of complex SOC systems

For this pupose, Gaisler Research has developed a open-source
VHDL IP library for both commercial and space-based

applications.

¢ This presentation will describe the concept of the IP library and
provide details on some of its cores, including the LEON3
SPARC processor.

GAISLER RESEARCH

Commmon OC desgn praders

¢ Merging of 3-party |P cores may cause several problems:
¢ Harmonisation of interfaces (on-chip buses, irq ...)
¢ Merging of synthesis and simulation scripts
¢ M apping of technology specific cells (RAM, pads)
¢ Name space conflicts, CAD tool specific syntax
@ Licensing issues
¢ Problems for space applications
¢ SEU hardening

¢ Portability and long-term support
GAISLER RESEARCH

GRLIBdeaghgods

¢ Efficient and unified SOC design IP library with:
¢ Common interfaces
¢ Unified synthesis and simulation scripts
¢ Target technology independent
¢ | P-vendor independent
¢ CAD tool independent
¢ Open and extensible format

¢ (SEU tolerance for space applications)

GAISLER RESEARCH

GRLIBinplamataionovervien

¢ Based around AMBA-2.0 on-chip bus (ARM)
¢ PCl-style plug& play support for AMBA configuration:
® Device & vendor identification
¢ Address and interrupt configuration
¢ Vendors and cores isolated through use of VHDL libraries
¢ Portability achieved through RAM and pad wrappers
¢ Automatic generation of synthesis and simulation scripts
¢ Supported tools: M entor, Cadence, Synopsys, Synplify, ISE

¢ New cores, CAD tool scripts or tech wrappers easily added
GAISLER RESEARCH

GRLIBIPCores

¢ 32-bit LEON3 SPARC processor

¢ GRFPU |EEE-754 floating-point unit

¢ 32-bit PCI bridge with FIFO and DM A, PCI trace buffer
¢ Ethernet 10/100 M bit Ethernet Controller

¢ PC133 32-bit SDRAM controller

¢ 32-bit PROM/SRAM controller

¢ AHB controller and APB bridge with plug& play support
@ Utility cores: uart, timer, interrupt control, GPIO, ...

¢ Memory and pad wrappers for FPGAs and ASIC
GAISLER RESEARCH

SeGRLIBSOCdesgn

PHY

1

SPARC UARTS

CPU TIMERS
FPU ‘MMU IOPORT

AHB I/F AHB/APB

PROM
SRAM/SDRAM

GAISLER RESEARCH

AMBA pluggplay suppart

¢ |nspired by PCI plug& play method

¢ Distributed address decoding

¢ => AHB/APB cores can be inserted/removed without
modifications to arbiter or address decoder/multiplexer (!)

¢ Configuration table automatically built and readable from bus
¢ Address mapping and interrupt assignment through generics

¢ Pure VHDL implementation, no external SOC tools needed

GAISLER RESEARCH

SOCoesgn VHDL code

ahb0 : ahbctrl -- AHB arbiter/multiplexer
port map (rstn, clkm, ahbmi, ahbmo, ahbsi, ahbso);

u0 : leon3s -- LEON3 processor
generic map (ahbndx => i, fabtech => FABTECH, memtech => MEMTECH, isetsize => 1, dsetsize => 1)
port map (clkm, rstn, ahbmi, ahbmo(i), ahbsi, Tleon3i(i), leon3o(i));

sd0 : mctrl -- PROM/SRAM/SDRAM memory controller

generic map (ahbndx => 0, apbndx => 0, apbaddr => 0, sden => 1)

port map (rstn, clkm, memi, memo, ahbsi, ahbso(0), apbi, apbo(0), wpo, sdo);
end generate;

apb0 : apbmst -- AHB/APB bridge
generic map (ahbndx => 1, memaddr => 16#800#)
port map (rstn, clkm, ahbsi, ahbso(1), apbi, apbo);

uart0 : apbuart -- UART 1
generic map (apbndx => 1, apbaddr => 1, irq => 2)
port map (rstn, clkm, apbi, apbo(1), uli, ulo);

irqctr10 : apbictrl -- dinterrupt controller
generic map (apbndx => 2, apbaddr => 2, ncpu => NCPU)
port map (rstn, clkm, apbi, apbo(2), irqi, irqo);

timer0 : gptimer -- timer unit
generic map (apbndx => 3, apbaddr => 3, irq => 8)
port map (rstn, clkm, apbi, apbo(3), gpti, open);

pci0 : pci_target generic map (ahbndx => 1, device_id => 16#0210#, vendor_id => 16#16E3#)
port map (rstn, clkm, pciclk, pcii, pcio, ahbmi, ahbmo(1));

eth0 : eth_oc

generic map (mstndx => 2, slvndx => 5, joaddr => 16#B00#, irq => 12)

port map (rst => rstn, clk => clkm, ahbsi => ahbsi, ahbso => ahbso(5),
ahbmi => ahbmi, ahbmo => ahbmo(NCPU+dbg+pci), ethi => ethi, etho => etho);

GAISLER RESEARCH

OCdesgnamulaion

VSIM 1> run

LEON3 Demonstration design

GRLIB Version 1.0

Target technology: infered, memory library: infered

ahbctrl: AHB arbiter/multiplexer rev 1

ahbctrl: Common I/0 area at Oxfff00000, 1 Mbyte

ahbctrl: Configuration area at Oxfffff000, 4 kbyte

ahbctrl: mst0: Gaisler Research Leon3 SPARC V8 Processor
ahbctrl: s1v0: Gaisler Research PROM/SRAM/SDRAM Controller
ahbctrl: memory at 0x00000000, size 16 Mbyte, cacheable, prefetch
ahbctrl: memory at 0x40000000, size 16 Mbyte, cacheable, prefetch
ahbctrl: slvl: Gaisler Research AHB/APB Bridge

ahbctrl: memory at 0x80000000, size 16 Mbyte

apbmst: APB Bridge at 0x80000000 rev 1

apbmst: slvl: Gaisler Research Generic UART

apbmst: I/0 ports at 0x80000100, size 256 byte

apbmst: s1v2: Gaisler Research Multi-processor Interrupt Ctrl.
apbmst: I/0 ports at 0x80000200, size 256 byte

apbmst: s1v3: Gaisler Research Modular Timer Unit

apbmst: I/0 ports at 0x80000300, size 256 byte

apbmst: s1v7: Gaisler Research AHB Debug UART

apbmst: I/0 ports at 0x80000700, size 256 byte

eth_oc5: Opencores 10/100 Mbit ethernet MAC, rev 0, irq 12

gptimer3: GR Timer Unit rev 1, 16-bit scaler, 2 32-bit timers, irq 8
apbictrl: Multi-processor Interrupt Controller rev 1, #cpu 2
apbuartl: Generic UART rev 1, irq 3

ahbuart7: AHB Debug UART rev 0

Teon3_0: LEON3 SPARC V8 processor rev 0

Teon3_0: icache 1%2 kbyte, dcache 1*1 kbyte

cpu0: 0x00000000 flush 0x0000

cpu0: 0x00000004 sethi %hi(0x00001000), %gl [0x00001000]
cpu0: 0x00000008 or %gl, 0x00c0, %gl [0x000010c0]

cpu0: 0x0000000c mov %gl, %psr

cpu0: 0x00000010 mov 0, %wim

cpu0: 0x00000014 mov 0, %thr

cpu0: 0x00000018 mov 0, %y

EE R I o o

GAISLER RESEARCH

LEONB SPARC V8 P ooessor

¢ 7-stage pipeline, multi-processor support

¢ On-chip debug support unit with instrcution trace buffer

¢ 250/400 M Hz on 0.18/0.13 um, 250/400 M IPS

¢ Virtex2pro: 125 MHz, Actel RTAX: 33 MHz

¢ SEU tolerance by design for space applications

¢ All on-chip ram protected against SEU:
136x32 bit register file: 4-bit parity and duplication
@ Cache rams use 4-bit parity and forced miss on error

#® No timing penalty, < 0.5% area overhead (on RTAX)
GAISLER RESEARCH

L EON3 Advanced floetingspairt unit

¢ High-performance single/double precision FPU (GRFPU)
¢ |EEE-754, fully pipelined, 4 clock latency
¢ ADD/SUB/MUL/DIV/SQRT/COM P/CONV
¢ Dual execution units, parallel processor interface
Fault-tolerance against SEU effects
¢ 150/250 M Hz, 150/250 M FLOPS on 0.18/0.13 um, 100 K gates
® A0 MHzon Virtex-11, 9,000 LUTs
¢ Too large to fit on RTAX devices

¢ Can be used for DSP designs (custom or processor-based)
GAISLER RESEARCH

GRLIBMage/Targe PGl

¢ Implements PCI 2.1 standard (32-bit, 33 M Hz)

¢ Configurable FIFO depth

¢ DM A channel for independent block transfers

¢ 45/75 MHz, 9% area of RTAX2000S

¢ Full SEU protection through 4-bit parity and duplication

¢ No timing penalty, 4 RAM blocks overhead on RTAX

GAISLER RESEARCH

Smnthegsrealts

Core Cells % of RTAX2000
LEONS3 + caches 3650 15.00%
PCI, master/target + DMA 2750 9.00%
10/100 Mbit Ethernet MAC 2200 7.00%
PROM/SRAM controller 500 2.00%
SDRAM controller 550 2.00%

LEON3 SOC system with: 16250 51.00%

PCI, memory ctrl, timers, uarts,
Irq ctrl, GPIO, ethernet MAC

GAISLER RESEARCH

L EONS3 multi-processor suppart

¢ L EONS3 processor core + caches = 3 mm2 on 0.18 process
¢ Multi-processor system possible without area problems
¢ More than 4 cores not practical due to memory bandwidth

¢ Asymmetric configuration possible, e.g.2 'main' processors with
FPU/MMU + 11/0 (DM A/Interrupt) processor

¢ Multi-processor DSU and interrupt controller available
¢ 4-processor system fits on X C2V 3000 FPGA @ 80 MHz

@ 4-processor system fitson aRTAX2000 @ 25 MHz

GAISLER RESEARCH

GRLIB Suppart tods

¢ GRMON plug& play debug monitor
¢ Debug 'drivers for each specific IP core
¢ Modules allow IP vendors to provide own drivers
¢ GRSIM modular simulator
¢ M odular, re-entrant simulator based on TSIM
¢ Can simulate any number of buses, cores or cpu's
¢ Vendor independent models

¢ Allows hardware/software co-simulation!

GAISLER RESEARCH

LLEONI'SOC Devdgpomat board

¢ Low-cost LEON CPCI FPGA development board available with
X C2V 6000, SDRAM, Flash, SRAM, 100-M bit Ethernet

GAISLER RESEARCH

GRLIBavdlability

¢ Freely available in source code under GNU GPL
¢ Valuable tool for academic research
¢ Improves test-coverage due to large user-base
¢ Allows early prototyping and try-before-buy

|nitial release September 2004

¢ Commercial licensing possible without restrictions

¢ The fault-tolerant version of the cores and the FPU are not
initially released in open-source, but the long-term strategy isto
release all cores under GPL.

GAISLER RESEARCH

Serge GOIFFON
Pierre GAUFILLET
AIRBUS France

Linux
A multi-purpose executive support for
civil avionics applications ?

Civil avionics software context

* Main characteristics
» Required dependability
» More and more software intensive : From 23Kb to 100Mb and more
» Synchronous and asynchronous architectures
» Very long lifetime compared to hardware components
» Integrated Modular Avionics concepts as new paradigm

* Development process based on DO-178B/ED-12B
» Guidance for satisfying airworthiness requirements
» Accepted by industrials
» Define processes and processes data

» Level of assurance and completion criteria depend on software criticality
level

Highly critical avionics systems
are not considered here !

LiNUX : a multi-purpose executive support for civil avionics applications ? August 2004 Page 2

August 2004

AIRBUS

AIRBUS

The Operating System : a key component

* O/S main objective

» Offers execution model and standard API to avionics applications
» H/W access through drivers and generic services : no impact on applications if

hardware changes

» Portability, interoperability and reuse-ability of applications

* Linux as a multi-purpose O/S candidate
» Open source based on common adopted standards -> portability, interoperability
» Follows cooperative development model -> distributed knowledge, innovation
» Adaptable, reliable, scalable, fits to a wide range of hardware components
» Widely used and today mature for embedded market

* 3 steps for appropriation in avionics
» Embedding Linux on avionics specific hardware platform
» Host multi-level critical software : partitioning properties
» Make Linux ready for DO-178B certification

LiNUX : a multi-purpose executive support for civil avionics applications ?

August 2004 Page 3

Industrial standards : POSIX vs ARINC 653

Some features comparison ...

POSIX
Event driven execution model
Multi-processing, multi-threading execution
model
Priority preemptive scheduling for processes
and threads

No temporal partitioning

1/O interrupt driven

Memory segregation

Socket

Inter Process Communication
Mutex and condition variables
Timers

Signal management

LiNUX : a multi-purpose executive support for civil avionics applications ?

ARINC 653
Cyclic based execution model
Same as POSIX but terminology used is partition for
process, and process for threads
Within partition time slice : priority preemptive
scheduling of A653 processes with deadline
management
Temporal partitioning : fixed allocation of time slices
to partitions in a repetitive time frame pattern
1/0 polling and 1/O partitioning
Same as POSIX but terminology is spatial partitioning
Sampling and queuing ports on I/O
Sampling and queuing ports on RAM
Buffer, blackboard, semaphore, event
No timers like POSIX but API service to wait for
timeout
Health monitoring

August 2004 Page 4

AIRBUS

%

AIRBUS

Linux for embedded and real-time systems

* Several OSS solutions based on Linux have been developed :

RTAI KURT QLinux
RTLinux ADEQOS
Linux/RK RedLinux

* The 2.6 kernel features low latency and preemptible kernel, and is
now ready out of the box for soft real time systems.

* Today, some projects aiming to bring Linux to the required maturity
for embedded uses are in progress :
» Carrier grade Linux (telecoms) — high availability, hot swappability,
kernel and driver robustness
» FlightLinux (NASA) — Linux in Space systems
» SELinux (NSA) — security enhanced Linux
)

£

LiNUX : a multi-purpose executive support for civil avionics applications ? August 2004 Page 5 AIRBUS

Embedding Linux on an avionics platform

* Research project

» Replace existing POSIX RTOS by Linux, in avionics platform, without changing
existing applications

* Targets

» Acquire kernel internals knowledge (drivers, memory management, file systems,
scheduling, synchronization, time management, ...)

» Verify the Linux API conformance to the replaced O/S (limit the effort of porting
existing applications to the new Linux platform)

* Results
» Linux integrated on a i486 avionics platform with network capabilities
» Reduced kernel footprint (memory, drivers, file system, ...)
» Reduced common Unix tools footprint (using Busybox)

» Adapted avionics I/O drivers and FLASH PROM file system with eXecute In Place
capability

» Re-use of an existing Ethernet driver (fast prototyping)
» Avionics applications successfully migrated to this new environment

%

s applications ? August 2004 Page 6 AIRBUS

LiNUX : a multi-purpose executive support for civil avionic

Embedded Linux diagram

1 — standalone machine
2 — diskless machine on network

3 — full drivers
4 — with applications

EEPROM, avionics buses,
wired I/O, FLASH with XIP

Boot sequence, interrupt controler,
realtime clock, serial port management

A OpenGroup
P | POSIX.1 I;I.Fst B“Si'bolx
P test suite clien 001s
Linux kernel
TCP/IP
stack
Drivers File System
E F
5 f Wired| | B | L
Ethernet| © 1re A A
R |2 | 1o s
¢} M
M9 H
Board Support Package

Network

LiNUX : a multi-purpose executive support for civil avionics applications ?

Avionics hardware

August 2004 Page 7

Host multi-level critical software

%
AIRBUS

* Research project

* Targets

* Results

use
» Management of process deadlines

LiNUX : a multi-purpose executive support for civil avionics applications ?

» Host avionics applications, based on Integrated Modular Avionics concepts
and ARINC 653 standard, on Linux platform

» Implement ARINC 653 cyclic scheduler and temporal partitioning
» Implement a standalone ARINC 653 API (not relying on POSIX services)

» Scheduler adapted to run both ARINC 653 and POSIX applications

» Sampling and Queuing ports attached to RAM, Unix sockets or AFDX
(Avionics Full DupleX Ethernet) ports

» Static allocation of A653 system resources and dynamic control of their

» Linux Trace Tool adapted to view ARINC 653 events (context switches
of A653 processes, API calls, partition switch, ...)

August 2004 Page 8

%
AIRBUS

POSIX POSIX
app, app, 653 app_

POSIX binding A653 binding

POSIX services /l\ A653 services
Scheduler

Drivers and common kernel services

CmZ R R

%

LiNUX : a multi-purpose executive support for civil avionics applications ? August 2004 Page 9 AIRBUS

Why Linux is not ready for DO-178B ?

* From the DO-178B viewpoint
» No development and verification plans
» Heterogeneous and complex development environment (distributed over
Internet, multi-platform, etc.)
» No universal requirement, design and code standards

» No design document

* But, from the product viewpoint
» OpenGroup testing environment provides test suites for POSIX conformance
» Reliable software, modular architecture
» Co-operative and hierarchically structured development model with
centralised version management
» Product reviewed and tested by peers

%

LiNUX : a multi-purpose executive support for civil avionics applications ? August 2004 Page 10 AIRBUS

* Produce missing certification material using reverse engineering

» Develop tools to extract semantic from code and produce kernel static
and dynamic design

» Focus on descriptions of the main kernel internal mechanisms
* Validation

» Compliance to standard, robustness, kernel profiling and performance
characterization

* Properties analysis

» Worst Case Execution Time, stack consumption, proof of properties in
complex algorithms

_ Development

» Take part in the kernel development process to provide simple and
deterministic algorithms in strategic parts of the software (memory
management, scheduling, file system management)

» Provide static allocation and dynamic control of system resources
» Provide robust spatial and temporal partitioning

LiNUX : a multi-purpose executive support for civil avionics applications ? August 2004 Page 11

* Studies show using Linux in an avionics environment is
possible.

* The main problem for certification is the predominant part of
the process objectives of the DO-178B compared to a product
objective approach...

* Linux gives low cost access to reliable and adaptable
technology but appropriation cost for dependable systems is
not negligible.

* Industrials need to work in partnership with labs and Linux
experts to share the cost of reverse engineering activities.

* Those certification activities should be processed in an Open
Source. project. ... st e

ARBUS FRANCE SAS. Tous i

Ce document et son contenu sont la propriété d'AIRBUS FRANCE SA.S.
Aucun droit de propriéié intellectuelle n'est accordé par la communication
du présent document et de son contenu. Ce document ne doit pas éire
reproduit ou communiqué & un tiers sans I'autorisation expresse et écrite
d’AIRBUS FRANCE S.A.S. Ce document et son contenu ne doivent pas étre
utilisés i d’autres fins que celles qui sont autorisées.

Les déclarations faites dans ce document ne constituent pas une offe
commerciale. Elles sont basées sur les postulats indiqués et sont exprimées
de bomne foi. Si les motifs de ces déclarations n’étaient pas démontrés,
AIRBUS FRANCE S.A.S serit prét en expliquer les fondements.

AIRBUS

AN EADS JOINT COMPANY
WITH BAE SYSTEMS

LiNUX : a multi-purpose executive support for civil avionics applications ?

August 2004

Page 13

OSS in the industry : the THALES example (©

~ THALES

Securing your future

Jean-Michel Tanneau
August 2004

jean-michel.tanneau@thalesgroup.com

Corporate Department T H A L E S

JMT / WCC Toulouse 2004

_[P Introduction @

~

The point of view : THALES
= (Software dominant) Systems integrator
The context
m Increase of complexity & Price reduction
m Conflicting lifecycle : Technology - COTS Versus Systems

[] Strong requirements . Reliable, Secure, Flexible, Configurable, Scalable, Available &
Maintenable in LT

m Small volumes
m COTS era (Perry directive)

Objectives

m Increase performance (effectiveness): quicker, better, cheaper
m Improve durability of R&D investments (core business)

R&D software strategy : 2 of the priorities
-Open architectures & Standardization
-Sharing & cooperation on generic technologies (non core business) %

THALES Research & Technology T H A L E S

Introduction @

—e

Is OSS an opportunity to meet objectives and R&D strategy?
m How to benefit from the product ?
m How to benefit from the development process ?
m How to benefit from the mechanisms of « value creation » ?

OSS & Thales

Two phases

m Since 1999 : Usage of OSS (in business)
e Main focus : To control risks

m Since 2002 : Use of OSS as a process
e Main focus : To leverage opportunity

One approach, a mix of
o Strategic approach and (Technical) Change management

3 THALES Research & Technology T H A L E S

JMT / WCC Toulouse 2004

_[P Part1 (©

How to benefit from

OSS as products (technical objects)

JMT / WCC Toulouse 2004

4 THALES Research & Technology T H A L E S

—e

JMT / WCC Toulouse 2004

5

Why to take an interest in 0SS? COTS drawbacks (©

B Uncertainty
m Product (black box) and delivered information (claimed Vs actual behaviour)
m (product and editor) Strategy : evolution, roadmap, business model
m Market (continuous restructuring)
B Subordination to a sole provider (monopoly)
B Divergent interests
m “mass market” driven : progressive disinvolvement with our business
- Certain domains considered as « niche » market
m Shortening of COTS life cycle — Impact on Quality
B Others
m COTS is intrusive (architecture / design)
m Support
m Cost?

THALES Research & Technology

THALES

—e

JMT / WCC Toulouse 2004

®

Use of OSS - Stakes (©

Opportunity

Threats / Brakes

*Same advantages as COTS : productivity
(time to market-cost to market) & added-value

*New source of provisioning (opens the market)
*Providers independence (durability of
components) - Control over system life
cycle

*A spreading (free & competitive) supply

*Trends : support from large IT companies &
institutional users (administrations & MoD)

*Community based AND commercial
support (free & competitive market)

*White box : secure (auditable), adaptable,
predictable (certification)

*White process : evolution, quality (fast bug
corrections)

*Users & technology driven

*Standards based (Interoperability) -
Commodification

M TCO?

*IPR (1! OSS licenses)
*Warranty and Liability

*Software patents - LZW (GIF), MP3,
SCO Vs. IBM lawsuit

+Diffuse and unequal (quality) supply -
(! care to not generalize: OSS is not a
“guarantee of quality”)

«Still an external component
*Continuous evolution

*Mixing many OSS

*Complexity (skills/training required)
*Un-grasped world + FUD

THALES Research & Technology

THALES

_[P Legal issues @

License analysis
m Isitan OSS ? (OSD compliant)
m Existence of third party patents ?

m |dentification of restrictions / conditions related to
redistribution (with or without modification)

If clarification needed, apply to the author

Usage in a specific programme
m Usage is analyzed & documented (software architecture)
m Compliance with contractual requirement and regulation
m If many OSS used, check that their licenses are compatible

JMT / WCC Toulouse 2004

7. THALES Research & Technology T H A L E S

: The Component Evaluation / Selection process @

Aims

reduce and/or delay risk occurrence - mitigate impact
Effectiveness : fulfills technical requirements
Confidence (now & mid-term)

Economic efficiency : TCO, know-how capitalization (ROI)

0

To get “The right product, at the right time, at the right cost
and available for the right period”

Approach
m Technical assessment
m Industrial assessment

JMT / WCC Toulouse 2004

8 THALES Research & Technology T H A L E S

: OSS dedicated Evaluation process @

Investigation

m Project (life) i
m Communities
and motivations ’T

m Competition

m Professional Conception Take off
support
market

Maturity

JMT / WCC Toulouse 2004

9 THALES Research & Technology T H A L E S

0SS dedicated Evaluation process (©

;mergence

*Initial objective
*Initiators

*Origin of the project
*Positioning

1% stable release

Taking-off
*Major events
*Successive stable releases

Maturity

Understanding

*Current model of development
*Developers community
*Positioning

*Adherence to standards
*Licensing scheme

Support

*Mailing lists

*FAQ

*Forums

*Commercial companies ? costs ?
Acceptance
*Echo in the press
*Related web sites
*Industrials supporting the development
*Number of users

eInstitutional & industrials users
Future

*Roadmaps

10 THALEpS Research & Technology T H A L E S

JMT / WCC Toulouse 2004

Evaluation - J2EE sample @

EJB 2.0 support 50 E.TNEDEU_MT'K

CMP 2.0 support 30
Database support 20

Industrial (aggregated) criterion & Weight| ,, |

Professional technical support 20 204—
Users population (nb, role) 15 104—
Project (re-)activity (Q/A Mailing lists) 13 0 T T
JBOSS ENHYDRA JOMNAS OPEMNEJE
Release & correction frequency 12
Company hosting 10

Developers community

8
Information (Web & Forums) 7
Documentation 6 Process run & assessed
5
4

Relationships with other 0SS on 2002 (MILOS project)
Press/web footprint » 350 OSS (45 segments)
Total 100 * Results published on eCOTS portérs. s &

11 THALES Research & Technology T H A L E S

JMT / WCC Toulouse 2004

Part 1 : Conclusion (®

Introducing OSS in the scope is a change,
then, organizational changes are needed

m A corporate policy to control correct usage of OSS

m A dedicated team (multi units)
e to provide legal analysis, advice and audits

or used without THALES' rior witen a

e to capitalize and to organize technical exchanges (workshops, lessons learnt) ; t0
set up networks of experts (evaluation process)

e to make known issues (awareness campaigns to all stakeholders)

e to ensure the smooth running of local organization (enterprise level) in
charge of procurement, validation/qualification, deployment, configuration
management

e to survey external expertise (support market)

m Updates of corporate referential
e Components evaluation & selection guideline
e Components usage guideline

JMT / WCC Toulouse 2004

2, THALES Research & Technology T H A L E S

: Part 2 @
How to benefit from OSS:

B through the collaborative development model

B through the process

JMT / WCC Toulouse 2004

3 THALES Research & Technology T H A L E S

Benefit from the OSS development model (©

—e

A model to improve quality, productivity & collective intelligence

B Thales Collaborative Development Platform
m Experimentation started mid 2002
m 25 projects - 60 active developers

B Experimentation assessment on-going, preliminary results show
benefits related to:

Reuse (& convergence) !

Synergy - Sharing & co-operation

Quality (peer reviews) g

Personal motivations (recognition)

Technological communities

Unified project referential for all artefacts (source, doc, mail, news, bug tracking...)

JMT / WCC Toulouse 2004

[A great disruption : from local (department/division/unit) to corporate interest J

4 THALES Research & Technology T H A L E S

Benefit from the OSS process (©

—e

A mean towards open architectures and standardization
perpetuate R&D investment

B |aunching of (or getting involved in) an OSS industrial con
m take the best of the 2 worlds (“traditional” and OSS)

m A
' _ Industrials /N
Community g, iumf% & ‘
enilicmi
Zmié’

m Team building & Project management

B Key success factors
m Need covered & Attractivene

m Motivation
m Licensing schema
m Budget - Plan

m Consortium building : Partnerships and strategic objectives
= Community management

JMT / WCC Toulouse 2004

L Make IP free (OSS) is not as easy as it could seem]

THALES Research & Technology T H A L E S

@

~

CARDAMOM

under

Cowmmano Contror ano InFormarion S

Dpen Source:
-
AN OPEN AND FLEXIBLE PLATFORM distribution

S

r Application CUreNS 3
= Y /jjj" |)
e rilds i
PROFILE Abstraction Layers H 2
[ORB [oS] s .
o _ :
E5

| | | | | | | | | [| | | | | |
e frordecn] a [premefrm] o ot . o e |

< —
~v 3
Pluggable Services g
A COMMON DEVELOPMENT ORGANISATION { MULTI ENVIRONMENT IZ
Creation of an Industrial Organisation currently grouping REFERENCE PLATFORM
THALES 2MA DD o 78@]
b
E <
5 Open Structure ready to welcome new partners £ 2 li‘\—; Jacm

[FOUNDATIONS

Tareet plafYiL- TIPLE POSSIBLE COMBINATIONS

Linux RedHat @ S2r2
SUN Solaris 5
AIX [x rethst sc

Languages:
Ada 95 —_— \\‘ 7 :7\
Java Java o AR @{b{b 22
Object Request Brokers:
TAO TA@ JacHORB”

JacORB
OrbRiver_Ada

1 MULTI-DOMAIN

2 CORBA Services (e.g. Data Distribution Service)
COTS integration or specific value-added implementations that fit industrial needs

JMT / WCC Toulou:

3 Support of CORBA Component Model extended to CCIS requirements
4 Active participation to isation of mi sources for CCIS
5 Support of Model Driven Architecture through the use of a UML tool chain

OrbRiver

Conclusion 1 ©

—e

0SS

is there,

is not a marginal phenomena

comes with opportunity

is disruptive :

e changes in organizational structures : formal ones (units in charge to analyze
risks, to recommend, to deliver, to maintain) and informal ones (networks of
experts)

e changes in organizational techniques (business referential) : purchase, :

business management, design, development integration, test/validation, deployment,
maintenance

Use (correctly) when it makes sense
COTS & OSS have a place in systems

7, THALES Research & Technology T H A L E S

JMT / WCC Toulouse 2004

Conclusion 2 (©

—e

OSS allows :

Improvement of performance

Improvement of R&D investments

Standardization (commodification) of software architecture
(openness, interoperability, technology insertion)

Sharing & cooperation on non-core business technology

OSSis A mean to meet our R&D strategy

JMT / WCC Toulouse 2004

8 THALES Research & Technology T H A L E S

	Program
	Motivation and Challenges
	Trusting Strangers
	An Interdisciplinary Perspective of Dependability in OSS
	Is Academic OSS Dependable?
	Business Models
	GRLIB Open-Source VHDL IP Library
	Linux: a Multi-Purpose Executive Support for Civil Avionics Applications?
	A Journey towards an OSS-Aware organization

